mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Математика для института (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
Этап III
1 Постановка задачи
Дана случайная выборка объема n=100 :
104.6
95.2
82.0
107.7
116.8
80.0
100.8
124.6
99.4
101.4
100.6
86.3
88.2
103.8
98.5
111.8
83.4
94.7
113.6
74.7
114.3
86.9
106.6
94.9
105.9
88.6
96.6
93.7
90.8
96.5
110.2
100.0
95.6
102.9
91.1
103.6
94.8
112.8
100.1
95.3
113.9
113.9
86.1
110.3
88.4
97.7
70.1
100.5
90.9
94.5
109.1
82.2
101.9
86.7
97.4
102.1
87.2
94.71
112.4
94.9
111.8
99.0
101.6
97.2
96.5
102.7
98.6
100.0
86.2
89.4
85.0
86.6
122.7
101.8
118.3
106.1
91.3
98.4
90.4
95.1
93.1
110.4
100.4
86.5
105.4
96.9
101.9
83.8
107.3
107.5
113.7
102.8
88.7
112.5
79.4
79.1
98.1
103.8
107.2
102.3
2 Теоретическая часть
Под случайной выборкой объема n понимают совокупность случайных величин , не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях независимых измерений.
Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастания .
Размах выборки есть величина r=Xn-X1, где Xn - max , X1 - min элементы выборки.
Группированным статистическим рядом называется интервалы с соответствующими им частотами на которые разбивается упорядоченная выборка, причем ширина интервала находится как :
тогда частота попадания в отрезок находим по формуле :
, где Vi - число величин попавших в отрезок , причем . Поделив каждую частоту на получим высоту для построения гистограммы.
Построив гистограмму мы получили аналог кривой распределения по которой можем выдвинуть гипотезу о законе распределения. Выровнять статистическое распределение с помощью закона о котором выдвинули гипотезу, для этого нужно статист. среднее mx* и статистическую дисперсию Dx* .
Которые находим как
Естественной оценкой для мат. ожидания является среднее арифметическое значение :
.
Посмотрим, является ли эта оценка не смещенной , для этого найдем ее мате-матическое ожидание :
,
то есть оценка для m является несмещенной.
Найдем дисперсию этой оценки :
Эффективность или неэффективность оценки з


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.03.