mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Математика для института (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
ГЛАВА 2
ПРАКТИЧЕСКАЯ ЧАСТЬ
Разложение функций в тригонометрический ряд Фурье
Исходные данные :
(Рис. 1)
Функция периодическая с периодом ( f(x+T=f(x) Функция имеет на промежутке конечное число точек разрыва первого рода.
Сумма ряда в точках функции сходится к значению самой функции, а в точках разрыва к величине , где -точки разрыва.
Рис. 1
Производная также непрерывна везде, кроме конечного числа точек разрыва первого рода. Вывод: функция удовлетворяет условию разложения в ряд Фурье.
1) F(x- кусочно-непрерывна на интервале .
2) F(x- кусочно-монотонна.
Так как отсутствует симметрия относительно OY, а также центральная симметрия - то рассматриваемая функция произвольна.
Представление функции рядом Фурье.
Из разложения видим, что при n нечетном принимает значения равные 0 , и дополнительно надо рассмотреть случай когда n=1.
Поэтому формулу для можно записать в виде:
( так как .
Отдельно рассмотрим случай когда n=1:
.
Подставим найденные коэффициенты в получим:
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника ,
2-ая гармоника ,
3-ая гармоника ,
4-ая гармоника ,
5-ая гармоника ,
и общий график F(x), сумма выше перечисленных гармоник. и сами гармоники.
Запишем комплексную форму полученного ряда
Для рассматриваемого ряда получаем коэффициенты (см. теорию)
,
но при не существует, поэтому рассмотрим случай когда n+1 :
(т.к. см. разложение выше)
и случай когда n-1:
(т.к)
И вообще комплексная форма:
или
или


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.