mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Некоторые свойства сферы Sn (WinWord 97) [Курсовая]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
МНОЖЕСТВО И РАССТОЯНИЕ В НЁМ. 4
ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА В 5
СФЕРА . 6
НЕКОТОРЫЕ СВОЙСТВА СФЕРЫ . 7
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 11
ВВЕДЕНИЕ
Многие величины, представляющие интерес, зависят не от одного, а от очень многих факторов, и если сама величина и каждый из определяющих его факторов могут быть охарактеризованы некоторым числом, то указанная зависимость сводится к тому, что упорядоченному набору чисел, каждое из которых описывает состояние соответствующего фактора, становится в соответствие значение исследуемой величины, которое она приобретает при этом состоянии определяющих величину факторов.
Например, площадь прямоугольника есть произведение длин его сторон; объем данного количества газа вычисляется по формуле
,
где - постоянная, - масса, - абсолютная температура и - давление газа. Таким образом, значение зависит от переменной упорядоченной тройки чисел или, как говорят есть функция трех переменных .
Мы ставим себе целью научиться исследовать функции многих переменных так же, как мы научились исследовать функции одного переменного.
Как и в случае функции одного переменного, изучение функции многих числовых переменных начинается с описания их области определения.
МНОЖЕСТВО И РАССТОЯНИЕ В НЁМ.
Условимся через обозначать множество всех упорядоченных наборов , состоящих из действительных чисел .
Каждый такой набор будем обозначать одной буквой и в соответствии с удобной геометрической терминологии называть точкой множества .
Число в наборе называют -й координатой точки .
Геометрические аналогии можно продолжить и ввести на множестве расстояние между точками , по формуле
(1)
Функция
,
определяемая формулой (1), очевидно, обладает следующими свойствами:
a) ;
b) ;
c) ;
d.
Последнее неравенство (называемое опять-таки по геометрической аналогии неравенством треугольника) есть частный случай неравенства Минковского.
Функцию, определенную на парах точек некоторого множества и обладающую свойствами a), b), c), d), называют метрикой


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.