mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Структура сходящихся последовательностей (WinWord 97)


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА

Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
Определение: Последовательность {xn} называется сходящейся, если существует такое число а, что последовательность {xn-а} является бесконечно малой. При этом число а называется пределом последовательности {xn}.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность {xn} называется сходящейся, если существует такое число а, что для любого положительного числа ( можно указать номер N такой, что при n(N все элементы xn этой последовательности удовлетворяют неравенству:
|xn-a|<.
При этом число а называется пределом последовательности.
НЕКОТОРЫЕ СВОЙСТВА СХОДЯЩИХСЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
Доказательство: Пусть a и b - пределы сходящейся последовательности {xn}. Тогда, используя специальное представление для элементов xn сходящейся последовательности {xn}, получим xn=а(n, xn=b(n, где (n и (n - элементы бесконечно малых последовательностей {(n} и {(n}.
Вычитая данные соотношения, найдем (n(n=b-a. Так как все элементы бесконечно малой последовательности {(n(n} имеют одно и то же постоянное значение b-a, то (по теореме: Если все элементы бесконечно малой последовательности {(n} равны одному и тому же числу с, то с=0) b-a=0, т.е. b=a. Теорема доказана.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть {xn} - сходящаяся последовательность и а - ее предел. Представим ее в следующем виде:
xn=а(n,
где (n- элемент бесконечно малой последовательности. Так как бесконечно малая последовательность {(n} ограничена (по теореме: Бесконечно малая последовательность ограничена), то найдется такое число А, что для всех номеров n справедливо неравенство (n(А. Поэтому | xn |a+ A для всех номеров n, чт


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.