mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Билеты по аналитической геометрии (WinWord 97) [Билеты]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ.
Пусть задана система векторов а1, а2, а3,.,ал (1) одной размерности.
Определение: система векторов (1) называется линейно-независимой, если равенство (1а1(2а2(лал=0 (2) выполняется лишь в том случае, когда все числа (1, (2,., (л=0 и (R
Определение: система векторов (1) называется линейно-зависимой, если равенство (2) выполнимо хотя бы при одном (i(0 (i=1,.,k)
Свойства
1. Если система векторов содержит нулевой вектор, то она линейно зависима
2. Если система векторов содержит линейно-зависимую подсистему векторов, то она будет линейно-зависимой.
3. Если система векторов линейно-независима, то и любая ее подсистема будет линейно независимой.
4. Если система векторов содержит хотя бы один вектор, являющийся линейной комбинацией других векторов, то эта система векторов будет линейно зависимой.
Определение: два вектора называются коллинеарными, если они лежат на параллельных прямых.
Определение: три вектора называются компланарными, если они лежат в параллельных плоскостях.
Теорема: Если заданы два вектора a и b, причем а(0 и эти векторы коллинеарны, то найдется такое действительное число (, что b(a.
Теорема: Для того что бы два вектора были линейно-зависимы необходимо и достаточно, что бы они были коллениарны.
Доказательство: достаточность. Т.к. векторы коллинеарны, то b(a. Будем считать, что а,b(0 (если нет, то система линейно-зависима по 1 свойству. 1b(a=0. Т.к. коэфф. При b(0, то система линейно зависима по определению. Необходимость. Пусть а и b линейно-зависимы(а(b=0, (0. а-b/(*b. а и b коллинеарны по определению умножения вектора на число.
Теорема: для того, чтобы три вектора были линекно-зависимы необходимо и достаточно, чтобы они были компланарны. Необходимость.
Дано: a, b, c - линейно-зависимы. Доказать: a, b, c - компланарны. Доказательство: т.к. векторы линейно-зависимы, то (а(b(c=0, (0. с(/(*а (/(*b. с-диагональ параллелограмма, поэтому a, b, c лежат в одной плоскости.
БАЗИС СИСТЕМЫ ВЕКТОРОВ. РАЗЛИЧНЫЕ СИСТЕМЫ КООРДИНАТ.
1. Опр


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.03.