mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Решение смешанной задачи для уравнения гиперболического типа методом сеток (WinWord&Pascal) [Лабораторная]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Р.Ф.
КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра прикладной и высшей математики
Лабораторная работа № 43
на тему:
Решение смешанной задачи для уравнения
гиперболического типа методом сеток
Группа М-2136
Выполнил студент _
Проверил преподаватель Воронова Лилия Ивановна
Курган 1998
Рассмотрим смешанную задачу для волнового уравнения ( 2 u/ ( t2= c 2 * ( 2u/ ( x2(1. Задача состоит в отыскании функции u(x,t) удовлетворяющей данному уравнению при 0 < x < a, 0 < t ( T, начальным условиям u(x,0= f(x), ( u(x,0)/ ( t = g(x) , 0 ( x ( a и нулевыми краевыми условиями u(0,t= u(1,t=0.
Так как замена переменных t ® ct приводит уравнение (1) к виду ( 2 u/ ( t2( 2u/ ( x2), то в дальнейшем будем считать с = 1.
Для построения разностной схемы решения задачи строим в области D = {(x,t| 0 ( x ( a, 0 ( t ( T } сетку xi = ih, i=0,1 . n , a = h * n, tj = j* ( , j = 0,1 . , m, ( m = T и аппроксимируем уравнение (1) в каждом внутреннем узле сетки на шаблоне типа "крест".
t
T
j+1
j
j-1
0 i-1 i i+1
Используя для аппроксимации частных производных центральные разностные производные, получаем следующую разностную аппроксимацию уравнения (1.
ui,j+1 - 2uij + ui,j-1 ui+1,,j - 2uij + ui-1, j
( 2 h2
(4)
Здесь uij - приближенное значение функции u(x,t) в узле (xi,tj.
Полагая, что ( / h , получаем трехслойную разностную схему
ui,j+1 = 2(1( 2 )ui,j ( 2 (ui+1,j- ui-1,j- ui,j-1 , i = 1,2 . n. (5)
Для простоты в данной лабораторной работе заданы нулевые граничные условия, т.е( 1(t( 0, ( 2(t( 0. Значит, в схеме (5) u0,j= 0, unj=0 для всех j. Схема (5) называется трехслойной на трех временных слоях с номерами j-1, j , j+1. Схема (5) явная, т.е. позволяет в явном виде выразить ui,j через значения u с предыдущих двух слоев.
Численное решение задачи состоит в вычислении приближенных значений ui,j решения u(x,t) в узлах (xi,tj) при i =1, . n, j=1,2, . ,m . Алгоритм решения основан на том, что решение на каждом следующем слое ( j = 2,3,4, . n) можн


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.