mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Численные методы (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
МЕТОД ПРОГОНКИ.
Система уравнений для определения коэффициентов сплайна представляет собой частный случай систем линейных алгебраических уравнений
с трехдиагональной матрицей , т.е. с матрицей, все элементы которой,не лежащие на главной и двух побочных диагоналях, равны нулю при та
В общем случае системы линейных алгебраических уравнений с трехдиагональной матрицей имеют вид
Для численного решения систем трехдиагональными матрицами применяется метод прогонки, который представляет собой вариант метода последовательного исключения неизвестных.
Т.е. матрицу А можно записать
(1) Идея метода прогонки состоит в следующем. Решение системы (1) ищется в виде
где -неизвестные коэффициенты, которые последовательно находятся от до (прямая прогонка ), а затем последовательно вычисляются (обратная прогонка.
Выведем формулы для вычисления Из (3) можно получить
Подставляя имеющиеся выражения для в уравнение (1),приходим при к уравнению Последнее уравнение будет выполнено если коэффициенты выбрать такими, чтобы выражения в квадратных скобках обращались в нуль.
А именно, достаточно положить Для отыскания всех достаточно задать
Эти начальные значения находим из требования эквивалентности условия (3) при т.е. условия , первому из уравнений (2.
Таким образом, получаем
(5)
Нахождение коэффициентов по формулам (4), (5) называется прямой прогонкой. После того, как прогоночные коэффициенты найдены, решение системи (1), (2) находится по рекуррентной формуле (3), начиная с Для начала счета по этой формуле требуется знать , которое определяется из уравнений
И равно
.
Нахождение по формулам
(6)
называется обратной прогонкой. Алгоритм решения системы (1), (2) определяемый формулами (4(6) называется методом прогонки.
Метод прогонки можно пременять, если знаменатели выражений (4), (6) не обрщаются в нуль.
Покажем, что для возможности применения метод прогонки достаточно потребовать, чтобы коэффициенты системы (1), (2) удовлетворяли условиям
(8)
Сначала докажем по индукц


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.