mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Численные методы (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ .
Пусть имеется функция которую необходимо продифференцировать несколько раз и найти эту производную в некоторой точке.
Если задан явный вид функции, то выражение для производной часто оказывается достаточно сложным и желательно его заменить более простым. Если же функция задана только в некоторых точках (таблично), то получить явный вид ее производных ввобще невозможно. В этих ситуациях возникает необходимость приближенного (численного) дифференцирования.
Простейшая идея численного дифференцирования состоит в том, что функция заменяется интерполяционным многочленом (Лагранжа, Ньютона) и производная функции приближенного заменяется соответствующей производной интерполяционного многочлена
Рассмотрим простейшие формулы численного дифференцирования, которые получаются указанным способом.
Будем предполагать, что функция задана в равностоящих узлах
Ее значения и значения производных в узлах будем обозначать
Пусть функция задана в двух точках и ее значения
Посстроим интерполяционный многочлен первой степени
Производная равна
Производную функцию в точке приближенно заменяем производной интерполяционного многочлена
(1)
Величина называется первой разностной производной.
Пусть задана в трех точках
Интерполяционный многочлен Ньютона второй степени имеет вид
Берем производную
В точке она равна
Получаем приближенную формулу
(2)
Величина называется центральной разностной производной.
Наконец, если взять вторую производную
получаем приближенную формулу.
(3)
Величина называется второй разностной производной.
Формулы (1(3) называются формулами численного дифференцирования.
Предполагая функцию достаточное число раз непрерывно дифференцируемой, получим погрешности приближенных формул (1(3.
В дальнейшем нам понадобится следующая лемма.
Лемма 1. Пусть произвольные точки, Тогда существует такая точка что
Доказательство. Очевидно неравенство
По теореме Больцано-Коши о промежуточных значениях непрерывной функции


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.03.