mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Теория вероятности и математическая статистика (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА

Рассмотрим случайную величину
Это частость наступления события А в n испытаниях
Используем неравенство Чебышева
где - произвольное неотрицательное число
Рассмотрим
Получена теорема Бернулли.
Частость наступления произвольного события при числе испытаний стремящемся к бесконечности по вероятности сходится к теоретической вероятности наступления события.
Обоснование того, что - частость наступления события A заключается в следующем: с тоски зрения ранее приведенного определения, независимым испытаниям эквивалентны две схемы:
* проведение n раз одного и того же испытания
* проведение n независимых испытаний над n копиями одного и того же.
Аналогия: 100 раз монету подбрасывает 1 человек или 100 человек подбрасывают по одной монете.
Закон больших чисел.
Рассмотрим независимые: одинаково распределенные случайные величины X1, X2, ., Xn с конечным мат. ожиданием и дисперсией.
Рассмотрим их среднее арифметическое
Используя вспомогательное неравенство получим
получаем
При числе испытаний, стремящихся к ? среднее арифметическое по вероятности сходится к математическому ожиданию.
В любом университетском учебнике доказывается сходимость с вероятностью 1.
Использование закона больших чисел.
Пусть имеется одна случайная величина X, над которой проведено n испытаний. Результаты испытаний
Тогда в силу примечания, сделанного Бернулли, эти n-чисел можно считать результатом одного испытания над n-мерной случайной величиной, у которой Xi независимы и распределены как X, т.е.
Тогда является реализацией следующего
Для справедлив закон больших чисел, следовательно является хорошей оценкой величины X.
Основы теории характеристических функций
Комплексная случайная величина Z определяется с помощью двумерной случайной величины (X,Y) следующим выражением
Операции над комплексными случайными величинами совпадают с операциями над комплексными числами.
Рассмотрим скалярную функцию случайных аргументов и числа i.
тогда в теории вероятности математическое ожидание случайной величины вычисляется


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.02.