mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Теория вероятности и математическая статистика (WinWord) [Лекция]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
МАТЕМАТИКА
Свойства многомерного нормального распределения
Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной матрицы B. Кроме того, подвектор вектора из k элементов, где также распределен нормально.
Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, то показать самим, что компоненты случайной величины являются независимыми.
если ,то многомерная плотность распадается на произведение одномерных, значит независимы.
Теорема.
Проводим линейное преобразование Y=AX. A - квадратная невырожденная матрица, тогда вектор Y также имеет n-мерное нормальное распределение вида
Следствие: Из доказательства теоремы вытекает, что ковариационная матрица
Оператор A переводит произвольную область из арифметического пространства Rn в некоторую область того же пространства.
Рассмотрим произвольную область S, принадлежащую пространству элементарных событий случайной многомерной величины X. Ей соответствует область D в пространстве элементарных событий случайного вектора Y. При этом
Запишем эти вероятности
где |I- якобиан перехода
Т.к. область S и соответственно D произвольны, то плотность вероятности случайного вектора x равна
n-мерная плотность вероятности случайного вектора Y равна
Преобразуем показатель степени e
Можно показать, что если нормальное распределение имеет данный вид, то B - ее ковариационная матрица
Следствие.
- многомерный нормальный вектор. A - прямоугольная матрица Тогда Y=AX имеет нормальное распределение вида
Y - m-мерный вектор.
Для определенности положим, что матрица A имеет вид
A (A1 A2)
A1 - квадратная матрица размером
A2 - матрица размерности
Рассмотрим матрицу размерности . Считается, что m первых столбцов независимы.
равен определителю полученной квадратной матрицы и не равен нулю.
E - единственная квадратная матрица размерности
Следовательно, на основании доказанной те


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.