mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Методы прогнозирования основанные на нейронных сетях (Lexicon) [Диссертация]


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
ПРОГРАММИРОВАHИЕ, БАЗЫ ДАHHЫХ
4. НЕЙРОННЫЕ СЕТИ ОСНОВАННЫЕ НА МЕТОДЕ ОБРАТНОГО
ФУНКЦИОНИРОВАНИЯ
В данной главе мы приводим детальное описание метода обратного распространения - способа обучения многослойных НС. Подробно
описана НС для распознавания рукописных цифр и и процесс ее обучения. В главе также проведена современная оценка метода обратного распространения.
4.1. Обучение нейронных сетей
Мы можем научить трехслойную сеть решать определенную задачу, пользуясь следующей процедурой. Сначала мы предъявляем сети
серию тренировочных примеров, которые состоят из паттерна активностей входных элементов вместе с желаемым паттерном активностей
выходных элементов [8].
Предположим, что мы хотим научить сеть распознавать рукописные цифры. Можно воспользоваться матрицей, из 256 сенсоров, каждый из которых регистрирует присутствие или отсутствие чернильного пятнышка в пределах маленькой площадки - фрагмента одной цифры. Для сети, таким образом, потребуется 256 входных элементов
(по одному на каждый сенсор), 10 выходных элементов (по одному на
каждую возможную цифру) и некоторое количество скрытых элементов.
Для каждой цифры, регистрируемой сенсорами, сеть должна генерировать высокую активность в соответствующем выходном элементе и
низкую в остальных выходных элементах.
Чтобы натренировать систему, мы предъявляем ей изображение
цифры и сравниваем действительную активность на 10 выходных элементах с желаемой активностью. Затем мы подсчитываем ошибку, определяемую как квадрат разности между действительным и желаемым
выходом. После этого мы изменяем вес каждой связи, с тем чтобы
уменьшить ошибку. Описанный процесс тренировки мы повторяем со
многими различными написаниями каждой цифры, пока сеть не научится правильно распознавать все возможные изображения.
Чтобы реализовать эту процедуру, нам нужно изменять каждый
вес на величину, пропорциональную скорости, с которой изменяется
ошибка по мере изменения веса [5]. Эта величина (называемая производной ошибки по весу и обозначаемая EW) вычисляется не прост


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.