mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

Метод деформируемого многогранника (WinWord)


запомнить в избранное
 
искать в этом разделе


ВНИМАНИЕ !!! Это сокращенная версия файла. Предназначена она только для того, чтобы вы могли предварительно ознакомиться с документом, перед тем как его скачать. Здесь нет картинок, не сохранен формат, шрифт, размеры и положение на странице.
Чтобы скачать полную версию, нажмите ссылки которые находятся чуть-чуть ниже (Info File Mail)
 Info File Mail 
Файл относится к разделу:
ПРОГРАММИРОВАHИЕ, БАЗЫ ДАHHЫХ
Государственный комитет Российской Федерации
по высшему образованию
НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра АСУ
Реферат по дисциплине
ИССЛЕДОВАНИЕ ОПЕРАЦИЙ
на тему
МЕТОД ДЕФОРМИРУЕМОГО МНОГОГРАННИКА
Студент Борзов Андрей Николаевич
Группа АС-513
Преподаватель Ренин Сергей Васильевич
Новосибирск 1997
Поиск по деформируемому многограннику
Впервые метод деформируемого многогранника был предложен Нелдером и Мидом. Они предложили метод поиска, оказавшийся весьма эффективным и легко осуществляемым на ЭВМ. Чтобы можно было оценить стратегию Нелдера и Мида, кратко опишем симплексный поиск Спендли, Хекста и Химсворта, разработанный в связи со статистическим планированием эксперимента. Вспомним, что регулярные многогранники в En являются симплексами. Например, как видно из рисунка 1, для случая двух переменных регулярный симплекс представляет собой равносторонний треугольник (три точки); в случае трех переменных регулярный симплекс представляет собой тетраэдр (четыре точки) и т.д.
Рисунок 1.
Регулярные симплексы для случая двух (а) и трех (б) независимых переменных.
Ѓ обозначает наибольшее значение f(x. Стрелка указывает направление
наискорейшего улучшения.
При поиске минимума целевой функции f(x) пробные векторы x могут быть выбраны в точках En, находящихся в вершинах симплекса, как было первоначально предложено Спендли, Хекстом и Химсвортом. Из аналитической геометрии известно, что координаты вершин регулярного симплекса определяются следующей матрицей D, в которой столбцы представляют собой вершины, пронумерованные от 1 до (n+1), а строчки - координаты, i принимает значения от 1 до n:
- матрица n X (n+1),
где
,
,
t - расстояние между двумя вершинами. Например, для n=2 и t=1 треугольник, приведенный на рисунке 1, имеет следующие координаты:
Вершина
x1,i
x2,i
1
0
0
2
0.965
0.259
3
0.259
0.965
Целевая функция может быть вычислена в каждой из вершин симплекса; из вершины, где целевая функция максимальна (точка A на рисунке 1), проводится проекти


подписаться на рассылку.
добавить в избранное.
нашли ошибки ?

Это место продается !!!

Ищу реферат (диплом) Если вы не можете найти реферат, то дайте в этом разделе объявление и возможно вам помогут :)
Предлагаю реферат (диплом) Если у вас есть свои рефераты и вы готовы помочь другим, то дайте в этом разделе свое объявление и к вам потянуться люди :)
Пополнить коллекцию Здесь вы можете пополнить нашу коллекцию своими рефератами.

mp3 | Магазин | Рефераты | Рецепты | Цветочки | Общение | Знакомства | Вебмастерам | Домой

время поиска - 0.04.